三角函数 高中能用到的公式有哪些

焦红丹

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。常见的三角函数包括正弦函数、余弦函数和正切函数。

三角函数 高中能用到的公式有哪些

高中三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理

a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径
余弦定理

b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式

l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解

-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系

X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

三角函数相关定理

正弦定理

对于边长为a,b和c而相应角为A,B和C的三角形,有:

sinA / a = sinB / b = sinC/c

也可表示为:

a/sinA=b/sinB=c/sinC=2R

变形:a=2RsinA,b=2RsinB,c=2RsinC

其中R是三角形的外接圆半径。

它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数(sinA)/a是通过A,B和C三点的圆的直径的倒数。正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。

三角函数正弦定理可用于求得三角形的面积:

S=1/2absinC=1/2bcsinA=1/2acsinB

余弦定理

对于边长为a、b、c而相应角为A、B、C的三角形,有:

a² = b² + c²- 2bc·cosA

b² = a² + c² - 2ac·cosB

c² = a² + b² - 2ab·cosC

也可表示为:

cosC=(a² +b² -c²)/ 2ab

cosB=(a² +c² -b²)/ 2ac

cosA=(c² +b² -a²)/ 2bc

这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定理用于在一个三角形的两个边和一个角已知时确定未知的数据。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。

物理力学方面的平行四边形定则中也会用到相关知识。

延伸定理:第一余弦定理(任意三角形射影定理)

设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A

热门推荐

标准差的计算公式 具体是什么

2024新高考数学大题6大题型 答题技巧有哪些

导数公式 其性质是什么

基本导数公式16个 分别是什么

导数的基本公式 常用的有哪些

面面垂直的判定定理 证明方法有哪些

中心对称图形的定义 和轴对称有什么区别

柯西不等式是什么 有哪些公式

最小公倍数是什么 怎么求

高中数学用什么教辅资料好 高中数学辅导书推荐