高考落下帷幕后考生就要准备志愿填报的工作了,下面是天津地区数学科目高考试题的具体内容,供大家估分参考:
高考地区 | 考试科目 | 试题 | 答案解析 |
天津 | 数学 | 点击查看 | 点击查看 |
高考估分是有必要的,高考估分不是为了让你知道自己大概能够考出多少分,而是让你知道自己高考成绩、全省排名的大致范围,以便于自己可以更好地填报志愿。
第一类:记忆力不好的学生
天津高考的答题卡、试卷、草纸都是统一回收的,学生想要记住自己全部的答案其实并不太容易,如果学生没有记答案的习惯,或记忆力不太好,那么估分其实是没有什么意义的。
估分估高了,天津学生和家长可能会白欢喜一场;估分估低了,又会影响学生和家长的情绪,这种情况下家长最好还是不要勉强了。
第二类:心态较差的学生
还有一类学生也不适合估分,那就是心态比较差的学生,众所周知高三一年对于天津学生来说是非常累的,很多学生心理压力都很大。
如果学生本身心态不算很好,那么最好不要强制他们估分,可以适当让孩子出去放松一下,减轻他们的心理压力,半个月以后高考成绩自然会出来。
绝密 ★ 启用前
2024年普通高等学校招生全国统一考试(新课标I卷)
数学
本试卷共10页,19小题,满分150分.
注意事项:
1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.
4.考试结束后,请将本试卷和答题卡一并上交.
一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
1. 已知集合,则( )
A. B. C. D.
2 若,则( )
A. B. C. D.
3. 已知向量,若,则( )
A. B. C. 1 D. 2
4. 已知,则( )
A. B. C. D.
5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
6. 已知函数为,在R上单调递增,则a取值的范围是( )
A. B. C. D.
7. 当时,曲线与的交点个数为( )
A. 3 B. 4 C. 6 D. 8
8. 已知函数为的定义域为R,,且当时,则下列结论中一定正确的是( )
A. B.
C. D.
二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.
9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A B.
C. D.
10. 设函数,则( )
A. 是的极小值点 B. 当时,
C. 当时, D. 当时,
11. 造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A. B. 点在C上
C. C在第一象限的点的纵坐标的最大值为1 D. 当点在C上时,
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
12. 设双曲线左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为___________.
13. 若曲线在点处的切线也是曲线的切线,则__________.
14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
15. 记内角A、B、C的对边分别为a,b,c,已知,
(1)求B;
(2)若面积为,求c.
16. 已知和为椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
17. 如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
18. 已知函数
(1)若,且,求的最小值;
(2)证明:曲线中心对称图形;
(3)若当且仅当,求的取值范围.
19. 设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有的,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.