数列收敛是什么意思 有几种判定方法

薛诗瑜

数列收敛是什么意思?想必有许多小伙伴对数列收敛存有疑惑。下面,就跟小编一起来了解一下吧。

数列收敛是什么意思 有几种判定方法

数列收敛是什么意思

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。

如果数列Xn收敛,每个收敛的数列只有一个极限。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项(当然,只有x在收敛域上rn(x)才有意义,并有limn→∞rn(x)=0

数列收敛和极限的关系

数列收敛则存在极限,这两个说法是等价的;

数列收敛则数列必然有界,但是反过来不一定成立!例如:Xn=1,-1,1,-1,.....|Xn|<=1,是有界的,但是Xn不收敛。

设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。数列收敛<=>数列存在唯一极限。

设有数列Xn,若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

请问级数收敛的判别有哪几种

1、对于所有级数都适用的根本方法是:柯西收敛准则。因为它的本质是将级数转化成数列,从而这是一个最强的判别法,柯西收敛准则成立是级数收敛的充分必要条件。

局限性:有一些数列的特征太过明显,可以用更加简洁的判别法去判别,用柯西收敛原理是浪费时间;另一方面,如果级数本身过于复杂,用柯西收敛准则也未必能很快得到证明。

2、对于正项级数,一个基本但不常用的方法是部分和有界,这同样是级数收敛的充分必要条件,这是正项级数中最强的判别法之一,局限性也是显然的:通常来说一个级数的和函数并不好求,用这种方法行不通,因此这个方法通常只有理论上的意义。

3、对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。

局限性:当级数过于复杂时,要找的那个新级数究竟是什么很难判断,通常的方法是对原级数的通项做泰勒展开,以找到与之等价的p级数。

4、对于正项级数,有积分判别法:如果x>=1且f(x)〉=0且递减,则无穷级数(通项为f(n))与1到正无穷对f(x)作的积分同敛散。这个办法对于某些级数特别有效。局限性:由于其本质是将级数化成了反常积分,如果化成的反常积分的收敛性难以判断,则有可能该方法就把问题复杂化了。

5、对于正项级数,还有拉贝判别法与高斯判别法。拉贝判别法是将级数与通项为1/(n^alpha)的级数做比较,如果当n充分大时,n(a[n]/a[n+1]-1)〉=r>1,那么级数收敛。

高斯判别法将级数与通项为1/(n(lnn)^alpha)的级数做比较,如果a[n]/a[n+1]=1+1/n+beta/nlnn+o(1/nlnn),其中beta〉1,则级数收敛。

热门推荐

积分公式大全 高数常用的积分公式24个

高中数学没学好最重要的原因有哪些

如何学好高中数学 数学学习方法

1/sinx不定积分

线性代数tr是指

行最简形矩阵只有一个吗

高等数学a和b的区别

数学主观题是什么题型

cscx的不定积分

高三数学不好要怎么补救