第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种: 根式代换法,三角代换法。
两种换元法例题
第一类换元积分法
原式=∫(x-1+1)/根号下(x-1)dx
=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。
第二类换元积分法
令t=根号下(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。