1、不定积分和定积分的区别是定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减。
2、在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
3、定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。