1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3.分析思维
比如结构化思维、思维导图、或百度脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。
在被视为“数据元年”的今天,数据分析师以待遇优厚和地位尊崇而闻名国际,曾被Times时代杂志誉为“21世纪最热门五大新兴行业”。今天,国内数据分析行业专业人才每年以千位数非速增长着,同期各行业领域空缺岗位已达近二十万,未来中国对数据分析师的需求更是呈井喷之势。
在数据分析人才培养上,国外已经将数据分析师人才作为国家战略。据统计,目前世界 500 强企业中,有90% 以上建立了数据分析部门。大数据时代对数据分析师的巨大需求也大大刺激了高等院校的培养热情。